Non-Opioid Pain Management: In the ED and Beyond

Craig P. Worby, PharmD BCCCP BCPS Clinical Lead Pharmacist – Emergency Medicine Dartmouth Hitchcock Medical Center

Objectives

- Describe the pathophysiology of pain
- Compare and contrast alternatives to opioids for pain management
- Analyze supporting literature for non-opioid pain options
- Recommend appropriate medication therapy given a patient case

What is Covered

- Strategies and approaches to acute pain in ED
- Paradigm shifts in perceptions of pain management
- New data on combination therapy of acetaminophen + ibuprofen
- New data on ketorolac
- Ketamine
- Intravenous lidocaine

What is Not Covered

- ICU Pain Management
- Neuropathic Pain
- Chronic Pain
- Cancer Pain

Epidemiology

- 33,091 overdose deaths involving an opioid in 2015
- ED only accounts for 4.7% of opioid prescriptions, but is frequently where patients are first introduced to opioids
- Percentage of ED visits in which an opioid is prescribed rose from 20.8% in 2001 to 31.0% in 2010
- 17% of patient's prescribed an opioid for acute pain were still taking the medication 1 year after initial ED visit

Red Flags for Opioid Abuse Potential

- Adolescents and young adults
- History of substance use (including tobacco)
- Social isolation or dysfunction
- Existing psychiatric disease
- Concomitant use of sedatives

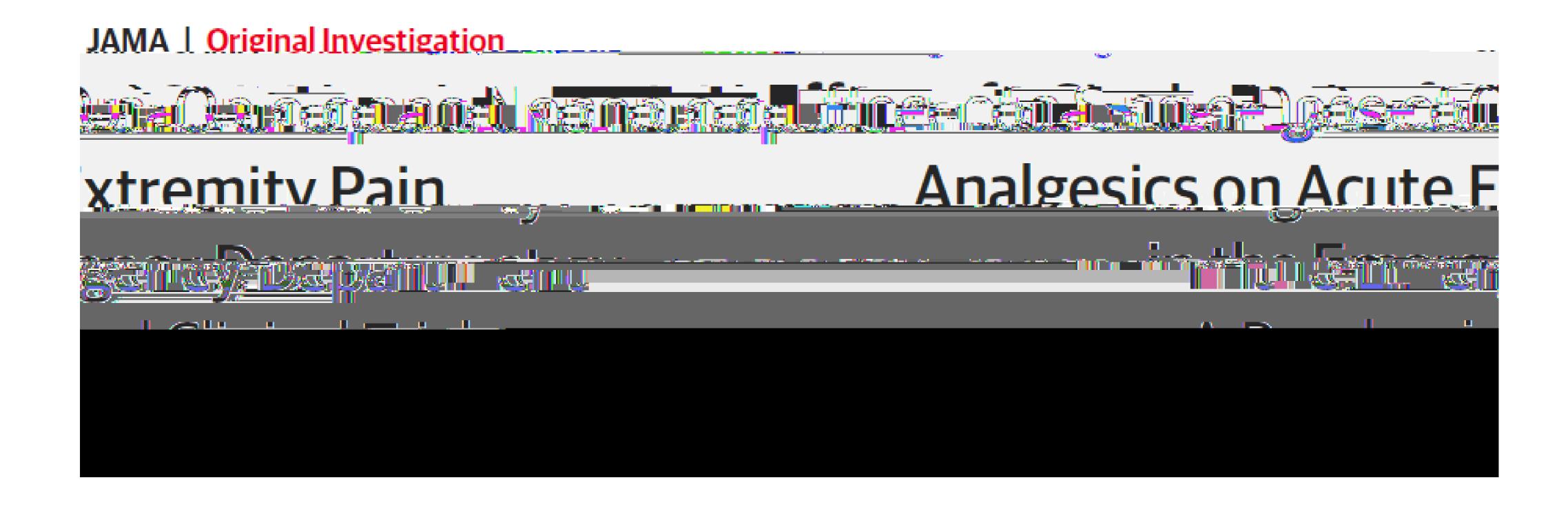
PHYSIOLOGY OF PAIN

5 PHASES OF ADAPTIVE PAIN

TRANSDUCTION
CONDUCTION
TRANMISSION
PERCEPTION
MODULATION

NMDA RECEPTORS
OPIOID RECEPTORS

NA+ CHANNELS


Acetaminophen + Ibuprofen

- Possible synergistic effect by decreasing pain through multiple mechanisms
- Combination used in Australia, New Zealand, and Europe
- Limited data to date postoperative and dental pain
- Advantages
 - Cost-effective
 - Limited adverse effects
- Disadvantages
 - Perception & guidance

Hot off the Press

Non-Opioid vs. Opioid Extremity Pain

- Patients aged 21 to 64 presenting to ED with acute extremity pain
- Randomized, double-blind, treatment control
- 4 intervention groups
 - 400 mg ibuprofen + 1000 mg acetaminophen
 - 5 mg oxycodone + 325 mg acetaminophen
 - 5 mg hydrocodone + 325 mg acetaminophen
 - 30 mg codeine + 325 mg acetaminophen
- Primary: NRS pain score at 2 hours
- Secondary:
 - NRS pain score at 1 hour
 - Severity of pain none, mild, moderate, severe

Non-Opioid vs. Opioid Extremity Pain

- 411 patients enrolled
 - 101 patients APAP + ibuprofen
 - 104 patients oxycodone + APAP
 - 103 patients hydrocodone + APAP
 - 103 patients codeine + APAP
- Notable demographics
 - 60% latino, 31% black
 - 62% presented with muscle strain or sprain
 - 22% presented with extremity fracture

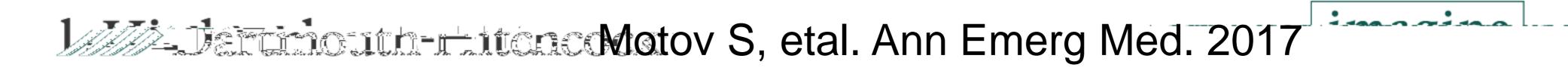
Non-Opioid vs. Opioid Extremity Pain

- 17.8% of patients received rescue analgesia
 - Predominantly oxycodone

PAIN MANAGEMENT

KETOROLAC

Patients aged 18-65 presenting to ED with acute flank,



Ketorolac Dosing in ED

- 240 patients enrolled
 - 80 patients received 10 mg
 - 80 patients received 15 mg
 - 80 patients received 30 mg
- Notable demographics
 - 45% male
 - 38% abdominal pain, 33% flank pain, 24% musculoskeletal pain

PAIN MANAGEMENT

KETAMINE

Ketamine

- Studied uses:
 - Acute pain wide range of etiologies
 - Chronic pain
- Studied routes
 - IV, IM, Intranasal, SubQ
- Dosing
 - Subdissociative: 0.15 0.6 mg/kg IV bolus
 - Consider mixing in 50 mL NS and administer over 15 minutes (Motov, 2017)
 - Anesthetic: 1-4.5 mg/kg
- Duration of Effect
 - Peak at 15 minutes
 - May last up to 1-2 hours

- Advantages
 - Large therapeutic window
 - Lack of respiratory depression
- Disadvantages
 - Limited data small trials in ED and postoperative setting

Ketamine Adverse Effects

Subdissociative Dosing	Anesthetic Dosing		
Nausea	Hypertension		
Dizziness	Tachycardia		
Feeling of unreality	Emergence reactions		
Hallucination - rare	Elevated intraocular pressures		
Mild elevations in blood	Elevations in intracranial		
pressure	pressures?		

Avoid Ketamine

- Psychiatric illness
- Systolic blood pressure > 180 mmHg
- Heart rate > 150 beats per minute

- Patients aged 18-55 presenting to ED with acute abdominal, flank, back, or musculoskeletal pain with a NRS > 5
- Prospective, randomized, double-blind
- 2 intervention groups
 - Ketamine 0.3 mg/kg
 - Morphine 0.1 mg/kg
- Primary: reductiioineaLionTc 0 TTTTTTTTTTC 0 Tw d26 >>BD0

• 90 patients enrolled

Assessment Question

Which of the following patients is the best candidate for ketamine for pain?

- A. 27 year old with a fractured ankle and a history of schizophrenia
- B. 74 year old with back pain and a blood pressure of 170/110
- C. 55 year old with a myocardial infarction
- D. 46 year old with abdominal pain and a tolerance to opioids

PAIN MANAGEMENT

LIDOCAINE

Lidocaine

- Dosing:
 - Intravenous lidocaine 2% (20 mg/mL)
 - Patients should be on 1.5 mg/kg actual body weight (max: 200 mg)
 - Dilute in 100-250 mL of D5W or NS
 - Infuse over 10-20 minutes
- Telemetry during administration and monitored for bradycardia

Lidocaine

- Advantages
 - Safe and effective
 - Cost effective

- Disadvantages
 - Potential for medication errors
 - Data limited to small studies and case series
 - Indications in which most effective are limited
 - Consider telemetry monitoring with IV administration

Common

- Nausea, vomiting, abdominal pain
- Dizziness
- Perioral numbness
- Uncommon
 - Metallic taste
 - Tremor
 - Dry mouth

Lidocaine IV vs. Morphine in Renal

- Colic Adults aged 18-65 years presenting to ED with renal colic
- Prospective, randomized, double blind, single center
- 2 intervention groups
 - Lidocaine IV 1.5 mg/kg
 - Morphine IV 0.1 mg/kg
- Primary: reduction in VAS at 5, 10, 15, and 30 minutes
- Secondary:

Lidocaine IV vs. Morphine in Renal Colic 240 patients enrolled

- 120 received lidocaine IV
- 120 received morphine IV
- Notable demographics
 - 73% patients were male
 - Mean age 36 years old

Lidocaine IV vs. Morphine in Renal Colic

Lidocaine IV vs. Morphine in Renal

- More patients responded to lidocaine than morphine 90% vs 70% (p=0.00001)
- Lidocaine was well tolerated, with dizziness being the most common adverse effect
- Conclusion: lidocaine is a safe an effective alternative to opioids in managing renal colic

Lidocaine IV vs. Ketorolac Back Pain

- Patients aged 15-55 with acute radicular back pain
- Randomized, double-blind, single center
- 2 intervention groups
 - Lidocaine IV 100 mg
 - Ketorolac IV 30 mg
- Primary: Difference in VAS at 60 minutes
- Secondary: Patient pain relief score at 1 week

Lidocaine IV vs. Ketorolac Back Pain

- 41 patients enrolled
 - 21 patients received lidocaine
 - 20 patients received ketorolac
- Notable demographics
 - Mean age 37 years
 - Mean weight 88.6 kg

Lidocaine IV vs. Ketorolac Back Pain

- 67% of patients in the lidocaine group required rescue analgesics
- No adverse effects were tracked
- Conclusions: while lidocaine decreased radicular back pain from baseline, it did not reach clinical significance

Lidocaine Additional Data

Setting	Indication	N	Route	Dose	Comparator	Result	Conclusions	Reference
ED	Critical limb ischemia	63	IV	2 mg/kg	Morphine 0.1 mg/kg	At 60 minutes, lidocaine had a mean reduction of 2.25 in VAS	Lidocaine superior to morphine	Emerg Med J 2015
Meta- analysis	Neuropathic Pain	329	IV	1-5 mg/kg	placebo	Pooled analysis – reduction in VAS by 10.60 mm and superior to placebo (-10.02 mm, p=0.002)	IV lidocaine is effective compared to placebo for neuropathic pain	

Assessment Question

Which of the following is FALSE about lidocaine for pain management?

- A. Intravenous lidocaine has been shown to be efficacious when administered for acute lower back pain
- B. Lidocaine doses of 1.5 mg/kg (about 100 mg) have been shown to be safe with few side effects
- C. Much of the data for intravenous lidocaine in the ED comes from small studies and case series

JA is a 53 year old female presenting to the ED with 9/10 pelvic pain. A CT scan reveals a new nephrolithiasis in her ureter. JA's past medical history is significant for back pain and opioid abuse (sober for 3 years). Allergies list GI bleeding with NSAID use. Home medications include: acetaminophen 1000 mg every 6 hours as needed for back pain and omeprazole 20 mg daily. Given her history, JA requests avoiding anything with the potential for addiction.

Future Directions

Key Takeaways

- Consider non-opioid analgesia first, even if moderatesevere pain
 - Acetaminophen 1000 mg + ibuprofen 400 mg
 - Ketorolac at limited doses (10 mg)
- Subdissociative ketamine is an effective alternative to opioids for pain
 - Administer over 15 minutes to reduce adverse effects
- Lidocaine is effective for renal colic and neuropathic indications but needs more research
 - While safe, recommend cardiac monitoring

Questions?

• Email: Craig.P.Worby@hitchcock.org

References

- Kyriacou DN. Opioid vs Nonopioid Acute Pain Management in the Emergency Department. JAMA. 2017;318(17):1655–1656. doi:10.1001/jama.2017.16725
- Chang AK, Bijur PE, Esses D, Barnaby DP, Baer J. Effect of a Single Dose of Oral Opioid and Nonopioid Analgesics on Acute Extremity Pain in the Emergency Department Randomized Clinical Trial. JAMA. 2017;318(17):1661–1667. doi:10.1001/jama.2017.16190
- Motov S, Yasavolian M, Likourezos A, etal. Comparison of Intravenous Ketorolac at Three Single-Dose Regimens for Treating Acute Pain in the Emergency Department: A Randomized Controlled Trial. Ann Emerg Med. 2017 Aug;70(2):177-184. doi: 10.1016/j.annemergmed.2016.10.014. Epub 2016 Dec 16.
- Motov S, Rockoff B, Cohen V, etal. Intravenous Subdissociative-Dose Ketamine Versus Morphine for Analgesia in the Emergency Department: A Randomized Controlled Trial. Ann Emerg Med. 2015 Sep;66(3):222-229.e1. doi: 10.1016/j.annemergmed.2015.03.004. Epub 2015 Mar 26.
- Motov S, Mai M, Pushkar I, etal. A prospective randomized, double-dummy trial comparing IV push low dose ketamine to short infusion of low dose ketamine for treatment of pain in the ED. Am J Emerg Med. 2017 Aug;35(8):1095-1100. doi: 10.1016/j.ajem.2017.03.004. Epub 2017 Mar 3.
- Bowers KJ, McAllister KB, Ray M, etal. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A
 Randomized Controlled Trial. Ketamine as an Adjunct to Opioids for Acute Pain in the Emergency Department: A Randomized
 Controlled Trial.
- Zitek T, Gates M, Pitotti C, etal. A Comparison of Headache Treatment in the Emergency Department: Prochlorperazine Versus Ketamine. Ann Emerg Med. 2017 Oct 13. pii: S0196-0644(17)31568-8. doi: 10.1016/j.annemergmed.2017.08.063. [Epub ahead of print]
- Farnia MR, Jalali A, Vahidi E, etal. Comparison of intranasal ketamine versus IV morphine in reducing pain in patients with renal colic. Am J Emerg Med. 2017 Mar;35(3):434-437. doi: 10.1016/j.ajem.2016.11.043. Epub 2016 Nov 22.
- Shachar Shimonovich, Roy Gigi, Amir Shapira, etal. Intranasal ketamine for acute traumatic pain in the Emergency Department: a
 prospective, randomized clinical trial of efficacy and safety. BMC Emerg Med. 2016; 16: 43.

